Here's information about the concept of checking if a point (4, -5) lies inside the circle defined by the equation (x-2)² + (y+1)² = 13:
The question is about determining whether a specific point resides within a given <a href="https://www.wikiwhat.page/kavramlar/Circle" >Circle</a>. The circle is defined by its equation in standard form. The point is (4, -5).
The core method involves substitution and comparison.
Understanding the Circle Equation: The equation (x-2)² + (y+1)² = 13 represents a circle centered at (2, -1) with a radius squared (r²) of 13. Therefore, the radius (r) is √13.
Substitution: Substitute the x and y coordinates of the point (4, -5) into the left-hand side of the circle's equation:
(4-2)² + (-5+1)²
Calculation: Simplify the expression:
(2)² + (-4)² = 4 + 16 = 20
Comparison: Now, compare the calculated value (20) with the right-hand side of the circle's equation (13).
Conclusion: In this case, 20 > 13. Therefore, the point (4, -5) lies outside the circle.
In summary, checking if a point is inside a circle is an application of <a href="https://www.wikiwhat.page/kavramlar/Analytic%20Geometry" >Analytic Geometry</a> principles, specifically relating to the <a href="https://www.wikiwhat.page/kavramlar/Equation%20of%20a%20Circle" >Equation of a Circle</a>. The <a href="https://www.wikiwhat.page/kavramlar/Distance%20Formula" >Distance Formula</a> is implicitly used here as the equation of a circle is derived from calculating the distance between a point on the circle and its center.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page